Intact Genomics (ig®) C58C1 Chemically Competent Agrobacterium cells are optimized for the highest transformation efficiency and are useful for various applications. The chromosomal background of C58C1 is C58. C58 is cured of the Ti plasmid pTiC58 resulting in C58C1. C58C1 Competent cells may be useful for transgenic operations that involve Arabidopsis and other plants. This Agrobacterium strain is streptomycin and rifampicin-resistant.
SpecificationsCompetent cell type: Chemically CompetentSpecies: A. tumefaciensStrain: C58C1Format: TubesTransformation efficiency: ≥ 1 x 105 cfu/µg pCAMBIA1391z DNABlue/white screening: NoShipping condition: Dry ice
Reagents Included
- C58C1 Chemically Competent Agrobacterium
- DNA (pCAMBIA1391z, 500 pg/µl)
- Recovery medium
Note: Liquid nitrogen is required.
StorageC58C1 Chemically Competent Agrobacterium: -80 ºCpCAMBIA1391z control DNA: -20 ºCRecovery medium: 4 ºC
Quality ControlTransformation efficiency is tested by using the pCAMBIA1391z control DNA supplied with the kit and using the protocol in this manual. Transformation efficiency should be ≥1 x 105 CFU/µg pCAMBIA1391z DNA. Untransformed cells are tested for appropriate antibiotic sensitivity.
General Guidelines
Follow these guidelines when using C58C1 Chemically Competent Agrobacterium cells:
- Handle competent cells gently as they are highly sensitive to changes in temperature or mechanical lysis caused by pipetting.
- Thaw competent cells on ice, and transform cells immediately following thawing. After adding DNA, mix by tapping the tube gently. Do not mix cells by pipetting or vortexing.
Calculation of Transformation EfficiencyTransformation Efficiency (TE) is defined as the number of colony-forming units (cfu) produced by transforming 1µg of plasmid into a given volume of competent cells.
TE = Colonies/µg/Plated
Transform 1 µl of (500 pg/µl) pCAMBIA1391z control plasmid into 50 µl of cells, add 950 µl of Recovery Medium. Recover for 3 hours and plate 100 µl. Count the colonies on the plate in two days. If you count 5 colonies, the TE is calculated as follows:
Colonies = 5µg of DNA = 0.0005Dilution = 100/1000 = 0.1TE = 5/.0005/.1 = 1×105
Please note, all agrobacterial strains are not well-studied for antibiotic resistance and there are many agrobacterial strains. Therefore, it is the customer’s responsibility to make sure his/her vectors are compatible with the Agrobacterial strains if he/she uses an alternate antibiotic selection than kanamycin-selection.1086-06 1086-18 1086-10